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Phase separations and orientational ordering of polymers in liquid crystal solvents
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A mean-field theory is introduced to describe nematic-isotropic phase transitions and phase separations in
binary mixtures of a liquid-crystal molecule and a semiflexible polymer chain. On the basis of the Onsager
model for excluded volume interactions, the Maier-Saupe model for orientational-dependent attractive inter-
actions, and the Flory-Huggins theory for isotropic mixings, we derive the free energy of the binary mixtures.
We examine the co-occurrences of the partial orientational ordering of the polymer chains in the liquid-crystal
solvents and the phase separations, depending on the stiffness of the polymer chain and the strength of
anisotropic interactions. The new phase behaviors, such as nematic unstable regions, nematic metastable
regions, a critical solution point in a nematic phase, azeotrope points, and triple points, are examined on the
temperature-concentration plaf&1063-651X99)06501-(

PACS numbgs): 61.41:+e, 64.75+¢, 81.30.Dz

I. INTRODUCTION In this paper we present a mean-field theory to describe
phase behaviors in binary mixtures of a liquid-crystal mol-

Mesomorphic mixtures comprised of polymers and liquid-ecule and a polymer chain which has various degrees of flex-
crystal molecules are of interest because of their importanibility. To describe the orientational ordering of polymer
technological applications in high modulus fibers, nonlinearchains, we extend the previous model for liquid-crystalline
optics, and electro-optical devices. The performances ofolymers[34,35 to the mixtures of a liquid crystal and a
these systems are closely related to a chain extension in ¥€miflexible polymer chain. We assume here that two neigh-
liquid-crystal phase and phase separatijas-3]. Low- boring bonds on the polymer chain have either bent or
molecular-weight liquid crystals are modeled as rigid rodlikestraightened conformations and the straightened conforma-
molecules. On the other hand, polymer chains have a variefifon gives rise to a rigid rodlike shape. The liquid crystals of
of stiffnesses and so when the polymer chains are mixetow molecular weight are modeled by rigid rodlike mol-
with the |iquid-crysta| molecules we can expect Various@CUleS. On the basis of the Onsager model for excluded vol-
types of phase separations depending on the stiffness of titéne interactions [36], the Maier-Saupe model for
polymer chain. orientational-dependent attractive interactidré¥,38 be-

In mixtures of a flexible polymer and a liquid crystal, tween rigid rodlike molecules, and the Flory-Huggins theory
broad biphasic regions between an isotropic phase and f@r binary mixtures[39], we derive the free energy of our
nematic phase appear below the nematic-isotopic transitiofystems. The nematic-isotropic transitions, the order param-
(NIT) temperature of the pure liquid-crystal molecule. Theeter of polymer chains, and that of liquid crystals are exam-
liquid-crystalline phases are destroyed on increasing théed as a function of the flexibility of a polymer chain and
po]ymer concentration. These nematic-isotropic phase Sepﬂ]e Strength of anisotropic interactions and we calculate the
rations have been investigated both experimenfdiy8] and ~ Phase diagrams including binodal, spinodal, and the NIT
theoretically [9—15. In contrast, mixtures of a liquid- lines on the temperature-concentration plane. These lines
crystalline polymer and a liquid-crystal have good miscibil- Will be important to study not only equilibrium properties but
ity even in a liquid-crystalline phagé,16—23. Flory and his ~ a@lso phase separation dynamics such as spinodal decomposi-
collaborators have described the various types in the phad®ns and metastable phase grof4®]. We also derive the
diagrams of liquid-crystalline polymer24—29. Recently —Landau—de Gennes expansion of our free energy. This ex-
the phase behaviors in binary mixtures of |iquid-crysta| mo|-pansi0n facilitates an intuitive understanding of the underly-
ecules have been analyzed by combining the Flory-Huggin#9 physics.
theory for isotropic mixing and the Maier-Saupe theory for
anisotropic ordering30—33. These theories, however, have
not considered the induced rigidity, or straightening, of poly-
mer chains in a nematic phase. In these systems it is impor-
tant to consider the co-occurrences of orientational ordering Consider binary mixtures of a semiflexible polymer and a
of the polymer chains in the liquid-crystal solvents and phasdiquid crystal. The polymers and liquid crystals interact
separation§16—23. Some years ago, based on an elastichrough orientational-dependent van der Waals interactions
chain model, some authors examined the phase behavioa®id excluded volume interactions. In these systems, it is im-
and the orientations of polymer chains in liquid-crystal sol-portant to consider both orientational ordering, or straighten-
vents[17-19. ing, of polymer chains and nematic ordering of liquid-crystal

molecules. In order to take into account the partial orienta-
tional ordering of the polymer chains in a nematic phase, we
* Author to whom correspondence should be addressed. assume here that two neighboring bonds on the polymer
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chain havg either bent or straighte_ned conformatipns and the ASeon= Sconf Np—Nr) — Seonf Np) 2.7
conformational energy of the straightened bondeg less
than that of the bent bondi84]. The straightened state of the n 72— 1\
bonds on a polymer chain is energetically favored, however = —kBln[ P (—) ] (2.9
it is entropically unfavorable. The nematic behaviors of the np,—n;\ €
straightened bonds as well as liquid crystals can be induced
by the anisotropic interactions. To describe the nematicFrom Egs.(2.4) and(2.8), the free energy2.2) can be ex-
isotropic phase transitiofNIT) and phase separations, we Pressed as
consider thermodynamics of our systems. Hereafter we refer
to the segments in straightened bonds as ‘“rigid” segments. z— 1)
e
5
1-x——|In(1-x)
Np

xBfo+xIn

Let N, andN, be the number of the semiflexible poly- BFben! Ne= ¢
mers and the liquid crystals, respectively. bgtbe the num-
ber of segments on the polymer and be that of the liquid

crystal. The free energy of our systems can be given by +xInx+ , (29

= + F i+ . . . . .
F=Foentt Fmixt Fnem 2.9) whereN;=n,N,+n,N, is the total lattice sites of our sys-

The first term shows the free-energy change needed ttems andp=npNp /Ny is the volume fraction of the polymer

. 2 Chains. The volume fraction of the liquid crystals is given b
straighten bent bonds on the polymers and is given by b,=1— ¢. The volume fractions, gf the Br/igid (stra?ight- y

ened segments on a polymer chain is given by

) . =N, N,/N;=xd. (2.10
where B=1/kgT, T is the absolute temperaturkg is the TR
Boltzmann constantf, is the local free-energy difference  The second term in Eq2.1) is the free energy of the
between the bent and straightened conformations, @mnd isotropic mixing for a polymer and a liquid crystal. Accord-

shows the number of rigid segments on the polymer chaining to the Flory theory, the free energy is given [38]
We assume here that each chain has the same conformation.

The second term in Eq2.2) is the combinatorial entropy 1-¢ P

related to the number of ways to selectrigid segments out BF mix/Ni= IN(1— @)+ —Ingp+ xp(1— @),

of then, segments on the polymer and is given by n, Np 212
n,!

S Jka=In p 2.3 where y (=Uq/kgT) is the Flory-Huggins interaction pa-
combr8 ! (np—n)! ' rameter related to isotropic interactions between unlike mo-
lecular specie$39].

By using Stirling’s approximation, Eq2.3) can be rewritten The third term in Eq(2.1) shows the free energy for the

BF pen= Np[nr(ﬁfo) — Scomv/Ke = ASconi/Kgl, (2.2

as nematic ordering. To describe the nematic behaviors, we
take into account both the excluded volume interact{@6$
Seomb/kg=—np[xINx+(1=x)In(1-x)], (2.9 and the orientational-dependefilaier-Saupg interactions
[37,38. We consider three coupling terms of the anisotropic
where interactions. Letv,, be the orientational-dependeMaier-

Saupe interactions between the liquid crystals,, be that

between the liquid crystal and the rigid segment on the poly-
(2.5 : e

mer chains, and,, be that between the rigid segments on
the polymer chains.

On the basis of both the Maier-Saupe model for
orientational-dependent attractive interactions and the On-
sager model for excluded volume interactions, the free en-
ergy of the nematic ordering is given p$5,41,39

X=n./n,

shows the fraction of rigidstraighteneg segments on the
polymer chains. The third term in E(.2) shows the change
in conformational entropy to bring a chain from a crystalline
(straightenefl state to a flexible amorphous state. This en-
tropy was omitted in the earlier worf34]. According to
Flory’s lattice theory, the conformational entro,n{n,) 1
gf t[he]polymer chain with the,, flexible segments is given ﬁFnem/Nt:if f (6)In4xt, (6)dQ
v [39 n, ' '

nyz(z—1)""?

Seonf(Np)/Kg=1n , (2.6) +%ffr(0)ln4wfr(0)d —3v,,S(1- ¢)?

oexpn,—1)

1 2 42
wherez is the lattice coordination number andis the sym- vaSS (A=) bm 2 v S dr
metry number of the chain. When the segments out of the +(prr=1(1= )2 +2(ps—1)(1= $)
n, segments on a polymer chain are replaced by rigid seg- )
ments, the conformational entropy changy8,,is given by +(prr—1) ¢y, (2.12
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wheredQ =2 sin#d6, 4 is the angle between the rigid seg- for the liquid crystals and

ments and the director of the orienting field. Equati@ari2

is the second virial approximation and, strictly speaking, can 1

be justified in the limit of sufficiently large values of and fr(0)= Z—exp[ 7:Pa(cos6)], 3.7

n, only. Thef,(6) andf.(#) show the orientational distri- '

bution functions of the liquid crystals and that of the rigid _ 5 B 5
segments on the polymers, respectively. The first two terms ne=npX[(v/+ 2)SA1= @)+ (v + 2)SXxP], (3.9

represent the decrease of entropy due to the nematic ordeg; ihe rigid segments on the polymer chains, where the con-

ing. The orientational-order paramet@r of the liquid crys-
tals is given by

S/=f P,(cosH)f (6)dQ (2.13

and the orientational-order parametgr of the rigid seg-
ments on the polymers is given by

Srzf P,(cosH)f (6)dQ, (2.19

where P,(cos6)=3(co$6—1/3)/2. The last three terms in

Eq. (2.12 show the excluded volume interactions between

rigid segments and the functign; (i,j=/,r) is given by

4
pij:;ffsinyw,o')fi(o)fj(e')dndn'. (2.15

In the isotropic phase, we hawvig(6) =1/(4m7) and p;;=1
[36].

stantsZ; (i=/,r) are determined by the normalization con-
dition (3.3. The termsy; and 2 in Egs. (3.6) and (3.7)
correspond to the attractive and excluded volume interac-
tions. From Eqs(3.3), (3.5, and (3.7), the constan; is
given by

(3.9
(3.10

Z,=4mlo[ n,],

Z,=4mlo[ 7],

where the function o[ #;] is defined as

Lol mi]= fol[Pz(cosﬂ)]“exr{ 7;P,(cos6)]d(cosb),
(3.11)

g=0,1,2 .... Substituting Eqs(3.5 and (3.7) into Egs.
(2.13 and(2.14), we obtain two self-consistency equations
for the two order parametes, andS; :

S,=lln, ol 5], (3.12

In the next section, we derive the order parameters

S,,S;, and the fractiorx in thermal equilibrium conditions.

IIl. NEMATIC ORDERING OF POLYMERS
AND LIQUID CRYSTALS

The orientational distribution functiofy( ) of the liquid

crystals and,(6) of the rigid segments on the polymers are

determined by the free enerd®.12 with respect to these
functions:

[&Fnem/af/( 0)]x,fr:0v (3.2
[‘?Fnem/afr(e)]x,f/zoa (3.2

with the normalization conditions
f fi(6)dQ=1, (3.3

i=/,r. Here we expand the kernel sirof Eqg. (2.15 in
Legendre polynomials:

) T 5
siny=—— ﬁPz(cosa)Pz(cose’). (3.9

4

Substituting Eq(3.4) into Egs.(2.15, Egs.(3.1), (3.2), and
(3.3 lead the distribution function:

1
f (0)= Z—exr[ n,P,(cosh)], (3.5

/

n=nA(v, +3)SA(1=¢)+ (vt §)SXe], (3.6

Sc=lal 7 1/ol 7:], (3.13

and the average value of the order parameters is given by
S=S,(1-¢)+S ¢,
=S/(1-¢)+Sxe.

The order paramete$, of the polymer chain is given by
S,=xS . The functiono;=[f;(6)In4xf(A)d and p;; in

Eqg. (2.12 are now given as a function of order parameters
S, andS; as follows:

(3.19

gi=nS—Inlg[ 7], (3.19
pij=1-3SS;. (3.1

Substituting Eqs(3.15 and(3.16 into Egs.(2.12), the free
energy for the nematic ordering is given by

BF nem/N=3(v,,+ 3)S2(1— ¢)?

+(vi+ 1)S/S(1-¢)x¢

1
+ E(Vrr+ %) 2X2¢2

1_
¢|n|o[77/]_i|”|o[77r]- (3.19
n, Ny

The fractionx of the rigid segments on a polymer chain is
determined by minimizing the free ener@.1) with respect
to x: (aF/ax)S/ ,Srzo. From Eqgs(2.9) and(3.17), we obtain
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(v + XSSP+ (v, + 3)(1— $)S,S,—D(x)=0,
(3.18

with

ol )+
ol a=0x] " (1-x)

and the solution fofS, with ¢# 0 is given by

D(x)=

=0, (3.19

S 5)(1—
St 2(v”+5/4)xd>{ (vt (1= 9)S,

+ V(v 5 (1= $)S,12+4(wy, + 2xD(X)},
(3.20

where\ is defined as

e
)\E(ﬁ>exq—ﬁfo). (32])

By solving the coupled equation&3.12, (3.13, and

PRE 59

on a polymer chain as a function of temperature and concen-
tration. From Eq(3.20 the order paramete3, is given as a
function of S, andx and so we only solve the coupled equa-
tions (3.12 and(3.13 for S, andx.

We further split the local free-energy differentgin Eq.
(3.29) into two parts:

fOZGO_TSO, (322
where sy (=kglnwg) is the local entropy loss andg
(<0) the energy change needed to straighten a bent bond.
The wq is defined aswg=w,/w,, Where w; (w,) is the
number of states of a straightenéaeny bond. If the seg-
ments are placed on a lattice of coordination nuniere
havewy=1/(z— 2) [24]. The stiffness of a polymer chain is
controlled by theey. The larger values o€, correspond to
the stiffer chains. The most flexible polymer chain is realized
when €,=0. Substituting Eq(3.22 into Eq. (3.21), we ob-
tain

N=wexp — Bep), (3.23

(3.20, we can obtain the values of the orientational-orderwherew=e/[(z—1)(z—2)].

parametersS,,S;, and the fractiorx of the rigid segments

Bup=B(IFI Ny,

1
1-x——
Np

=np| —xINX+xInx+ In(1—x)

+Ing+

The chemical potentials are given by

1—@><1—¢>

n,

+npx (1= @)+ np( 2wt S )2+ (vt 3)SS(L—g)xb+ (v + §)SXPH— niln Lol 7]

p

(3.29
for the polymer chain and
Bu,=B(IFIIN )y,
n, 2
=In(l1-¢)+|1- —> p—n,xd
Np
+n/( (vt DS(1= )2+ (v, + 3)S,S(1- )X
1
+ (vt HISXPPP— —Inlg[ 7,1 ], (3.29
n,

for the liquid crystal. Wherx=0, Egs.(3.24 and (3.25 uAd)=u, (¢"), where the volume fractionp’ and ¢”
show the chemical potentials in binary mixtures of a f|eXib|ecorre3ponds to that of the lower and higher concentration
polymer and a liquid crystdll5] and wherx=1, the theory  phases, respectively. Spinodal lines are derived by the con-
results in that for binary mixtures of rigid rodlike molecules dition (du,/d$)=0. The region §u,/3d¢$)>0 corresponds
[9,30]. to the unstable region.

The coexistence curvébinoda) of the phase equilibrium In our numerical calculations, we define here the rdtio
are derived by the coupled equationg(¢')=pu,(¢") and  of the anisotropic interaction as
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fE Vir /V// (326) 08 "—-—-'-—“_’_T,'__-
and assume that the orientational-dependent interactipn
is proportional to the square root of the productiof and
v, [42,31: S,
R i
v,=b\v, v, (3.27 Sp ———
T
whereb is the constant. We then obtain .
T/ Ty, ;=09
v =E&v,,, (3.28 b=l
v, =bVév,, . (3.29 06 08

The orientational-dependent interaction parameter be- . . .
tween the liquid-crystal molecules is given to be inversely FIG. 1. Orientational-order parameters and the frackiaf the

proportional to temperatuf@8]: straightened segments on the polymer chain plotted against the
polymer concentration¢ for the reduced temperatur@/Ty, ,
v,,=U,/KgT. (3.30 =0.9. The value of stiffness parameterof the polymer chain is
changed.
We also define the dimensionless nematic interaction param-
etera: Figure 1 shows the orientational-order parameters and the
fractionx of the straightened segments on the polymer chain
a=v, Ix=UalUo. (3.3 plotted against the polymer concentrati¢rwith the reduced

temperaturel /Ty, ,=0.9, whereTy, , is the NIT tempera-

ture of the pure liquid-crystal molecule. The value of stiff-
ness parameter of the polymer chain is changed. The larger
values of e correspond to the stiffer polymer chains. The

When ¢=0, Eq.(3.17) represents the free energy for the
pure liquid-crystal molecule:

BF=3%(v,, + %)S?/— i|n|0[ 77;], (3.32 solid curve refers to the order parametr of the liquid
n, crystal and the dash-dotted line shows the average-order pa-
rameterS, (=x§) of the polymer chain. The short-dashed
n=n/v,,+3%)S,. (3.33  line shows the average-order paramedaf the system and

the dotted line corresponds to the fractioof the rigid seg-
The nematic phase appearsref v, +5/4)=4.54[34,3§ ments on the polymer chain. Whé Ty, ,=0.9, the pure
and so the NIT temperatufg,, , of the pure liquid crystal is polymer chains 0£<2.25 are in an isotropic state, and so if

given by there are no correlations between polymers and liquid crys-
tals, the nematic ordering of the polymer chains cannot take

n,(U,/kg) place. However, we find, for small values ef a first-order
TNL/:M' (3.34 NIT at a certain polymer concentration where the nematic

ordering of the polymer chains is induced by the liquid crys-

In our theory, the stiffness of the polymer chain is char-tals. The values ok and S, in the nematic phase are small
acterized with a single parameteror ¢,. The larger values and the polymer chains are slightly ordered. The nematic
of e correspond to the stiffer polymers. The most flexible Phase is almost stabilized by the orientational ordering of the
polymer chain is realized whee=0 or x=0, in which our liquid-crystal molecule. In the case et 0, or a sufficiently
theory describes binary mixtures of a flexible polymer and dlexible polymer, the nematic ordering of the polymer chain
liquid crystal [15]. In contrast, whene>>0 or x=1, the cannot occur and the orientational ordering of the liquid
theory results in that for binary mixtures of rigid rodlike Crystal only takes place ab~0.06[15]. On increasing the

moleculeg9,30]. Our theory connects the two limiting theo- Stiffnesse, the value ofx becomes large and the order pa-
ries. rameterS, is increased and so the polymer chain and the

liquid crystal are highly ordered in the nematic phase.
Figure 2 shows the phase diagrams on the temperature-
concentration plane fofa) e=2 and(b) e=2.5. The solid
In this section, we calculate the equilibrium values of or-curve refers to the binodal and the dotted line shows the
der parameterS,,S,, and the fractiorx of rigid segments first-order NIT line. The dash-dotted line shows the spinodal.
on a polymer chain as a function of temperature and concerin the biphasic regions between the nematic and the isotropic
tration and derive the phase diagrams on the temperatur@ghases, we have two different metastable regions: an isotro-
concentration plane. In the numerical calculations of Sec. lllpic metastabléIM); a nematic metastabl®&M), and a nem-
we define here the stiffness parameter|ey|/U, of a semi-  atic unstable regiotNU). When the value of is small, the
flexible polymer chain. The values @f, andU, are of the theory represents the phase diagrams of flexible polymer—
order of thermal energy. In the following calculations we useliquid-crystal mixtures and the broad biphasic region be-
0=0.025 =12), b=1, ¢é=1, a=5,n,=2, andn,=20 tween a nematic and an isotropic phase appg24$ On
for example. increasing thee, the NIT temperaturéy; , of the pure poly-

IV. PHASE SEPARATIONS
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FIG. 2. Phase diagrams on the temperature-concentration plane 1.01 T T r T :
for (@) e=2 and(b) e=2.5. () =23 £=28

mer chain increases and the biphasic region becomes narrow. 1.00

The nematic unstable regiaiNU) disappears in Fig. (B).

The type of the phase diagrams strongly depends on the stiff-

ness of the polymer chains. The same results are also derived

for the dependence on the molecular weight of the polymer

chain. On increasing the length, of the semiflexible poly- 0.98

mer chain, theTy, , is increased and the biphasic region

becomes narrow. Flexible polymers almost do not dissolve in

liguid-crystal solvents at low polymer concentrations and the 0.97

broad biphasic region between the nematic and isotropic

phases appears below the NIT temperature of the pure liquid

crystal. The free energy is minimized by the phase separation FIG. 3. Phase diagrams on the temperature-concentration plane

rather than the straightening of the polymer chains. Fofor (a) a=2.6, (b) a=2.5, and(c) «=2.3 with e=2.8 andb

stiffer polymer chains, the mixtures have the narrow=0.7.

nematic-isotropic biphasic region and the spinodal region

disappears. The free energy is minimized by the partial orand(c) @=2.3 withe=2.8 andb=0.7. When the value df

dering of the polymer chain in liquid-crystal solvents ratheris small (b<<1), the nematic-isotropic liquid coexistence ap-

than the phase separation. The former can be classified as thears below the NIT temperature of the individual element.

polymer-induced phase separation. The latter, however, can Fig. 3(a), we find the spinodal line and the two-phase

be classified as the polymer-induced stabilization of nematicoexistence between nematic phases with an upper critical

ordering. The stiffness of the polymer chain strongly affectssolution temperatur@JCST) in the nematic phasg23]. We

the nematic ordering of the polymer chain in the liquid- also find the azeotrope point at which two equilibrium nem-

crystal solvent and plays an important role in characterizingatic and isotropic phases have the same composition. On

the unstable regions and the width of the biphasic regionlecreasing the value af, the UCST in the nematic phase

between a nematic and an isotropic phase. increases and we find the coexistence of two isotropic liquid
On decreasing the value of the nematic interaction paramphases with an UCST as shown in Figc)3In Figs. 3b) and

eter «, the unfavorable interaction parametey) (between  3(c), the spinodal lines of the nematic phase intersect at the

the polymer and the liquid crystal becomes dominant in theNIT curve. We also find two triple points. The upper triple

free energy. Figure 3 shows the phase diagrams on theoint shows the coexisting of two isotropic liquid phases and

temperature-concentration plane f@y «=2.6, (b) «=2.5, a nematic phase. The lower triple point corresponds to the

Ty,

0.99
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nematic-isotropic-nematic phase separation. Below the triple az=(1—¢)g°+ px*, (A10)
point we have broad biphasic regions between two nematic
phases. The two-phase coexistence in a nematic phase is canith g=n,/n, and
trolled by the nematic interaction paramete=U,/y.
n=(v+ %)np. (AlD
V. CONCLUSION
) . The 7 is given as a function of temperature through the
We have presented a mean-field theory to describe thgnigotropic interactions, which is inversely proportional to
phase separations in binary mixtures of a liquid-crystal mo"temperature. The equilibrium value 8fs given by minimiz-

ecule and a polymer chain which has various degrees of flexy g the free energy. The discontinuous phase transition oc-
ibility. The theory takes into account both the partial orien-. s at the NIT pointyy,

tational ordering of the polymer chain and the nematic
ordering of the liquid crystal. The phase diagrams, including 1( 2 ) -1

binodal, spinodal, and the NIT lines, on the temperature- ﬂ+ az
concentration plane predict the unstable and metastable re- 10 63a,
gions in the nematic-isotropic, nematic-nematic, and three-

phase coexistence regions. These regions should playhere the free energies E@h4) of the isotropic and nematic
important roles not only in the static properties but also inPhases are equal. Fer<ny, we haveS=0. For n> 7y,

=5 (A12)

the dynamics of phase separations. the order parameter is given by
APPENDIX A: LANDAU —de GENNES EXPANSIONS . 3B, _ 32AC
- 8C 9B2

In this appendix, we focus on the vicinity of the NIT point
in binary mixtures of polymer and liquid crystals. In order to >8a 5
obtain the approximate formulas of the NIT temperaflige - 1+ \/1+ 1a3( 1——|.
and the order paramet&f we derive the Landau—de Gennes 27na; 5a3 a,n
expansion of our free enerd®.17). This expansion helps an
intuitive understanding of the underlying physics. Here weThe order paramete®y, at the NIT point is given by
assumev=v,,=v, =, and the value ok is a constant

5a,

(A13)

for simplicity. The larger values of correspond to the stiffer B 20a,(a, ag
polymers. The characteristic rafig=(R?)/ R, Of the poly- SN=5c T o\ 10 6zl (A14)
mer chain is given byl =(1+x)/(1—x) for large n, a3 3

[24,34), where(R?) shows the mean-square end-to-end dis- S
tance of the polymer chaifRpya=an, is the length of the The equilibrium order paramet&starts atSy, and gradually

: - - . approaches 1 with increasing(<5/a;). From Egs.(A11)
?g%;naﬁ; Iglg)egéecrésnl]oen, and is a bond length. Equations and(A13), the NIT temperature is given by

n,=n,/(v+ %)S: (A1) NI:Ua—/kB. (A15)
(mni/np—1.29
= an(V+ %)S, (A2) .
For T<Ty,, the nematic phase becomes stable. WRen
respectively. Equatiof.11) can be expanded in thg; as =1, EQ. (A15) shows the NIT temperature for the binary
mixtures of rigid rodlike molecules.
1, s 1, Here we derive the approximate formulas for the NIT
Intol 7= 757+ 7057 ~ 7007 (A3)  temperature and the order parameter at the NIT point for the

following three cases. For mixtures of a sufficiently flexible

Substituting Eq(A3) into Eq. (3.17), we obtain the nematic Polymer and a liquid crystal, we can set0 and so we
free energy as an expansion in the order parantter obtain 7y, =315[73(1- ¢)g]. From Eq.(A15), the NIT
temperature is given by
BF nem/Ni=(v+ $)(AS—-BS*+CSY), (A4)
4(Ualkg)(1— )

1 1 TN|: . (A16)
A=3(1-sa17), (A5) 5[3.45h,—(1-¢)]
B= a2 (A6) The NIT temperature is decreased with increasih@t ¢
1059277 >1-3.45h,. The order paramete,, at the NIT point is
. 3 decreased with increasing as

C= 737, (A7)
Sy=0.7721— ¢). (A17)

a;=(1-)g+ ¢x?, (A8)

For pure liquid crystals without polymer chains, we can
a,=(1-$)g*+ ¢x°, (A9)  set¢=0 and obtain
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4(Ua/kg)

T (A18)
5(3.45h,—1)

TNI,/:

and Sy =0.772. TheTy, , increases with increasing, and
diverges atn,=3.45. In our mean-field approximations,
when the axial ratin, of the liquid crystal is larger than

3.45, the nematic phase is stable at all temperature. For

larger values ofi -, the repulsive interactions between rigid
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and S\=0.77X. The temperaturdy, , is increased with
increasing n, when np<3.4515(2. For long-semiflexible
chains k<1), the order parameter at the NIT point is small
and the transition becomes almost second ofdé4}.

From Egs.(A18) and (A19), we obtain

Trnip=Thi,/ (A20)

rods dominate and the attractive interaction plays only an

auxiliary role in the NIT and so th&y, diverges15,27,43.

When¢=1, we can obtain the formula for pure semiflex-
ible polymerd 34]. The stiffness of the polymer is controlled
by x=n,/n,. From Eq.(A15), we obtain

4(U, k)N,

—_— A19
5(3.45k%—ny,) (A19)

NI,p~—

at x=x*(=+n,/ny). Whenx<x*, the temperaturd, of

Eqg. (A15) decreases with increasing the polymer concentra-
tion ¢ and the polymer chains destroy the orientational or-
dering of the liquid crystals. In contrast, wher>x* the
temperaturel y, increases with increasing polymer concen-
tration ¢ and the polymer chains promote the orientational
ordering of the liquid crystals.
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