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Phase separations and orientational ordering of polymers in liquid crystal solvents

Akihiko Matsuyama* and Tadaya Kato
Department of Chemistry for Materials, Faculty of Engineering, Mie University, Tsu, Mie 514, Japan

~Received 26 May 1998!

A mean-field theory is introduced to describe nematic-isotropic phase transitions and phase separations in
binary mixtures of a liquid-crystal molecule and a semiflexible polymer chain. On the basis of the Onsager
model for excluded volume interactions, the Maier-Saupe model for orientational-dependent attractive inter-
actions, and the Flory-Huggins theory for isotropic mixings, we derive the free energy of the binary mixtures.
We examine the co-occurrences of the partial orientational ordering of the polymer chains in the liquid-crystal
solvents and the phase separations, depending on the stiffness of the polymer chain and the strength of
anisotropic interactions. The new phase behaviors, such as nematic unstable regions, nematic metastable
regions, a critical solution point in a nematic phase, azeotrope points, and triple points, are examined on the
temperature-concentration plane.@S1063-651X~99!06501-0#

PACS number~s!: 61.41.1e, 64.75.1g, 81.30.Dz
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I. INTRODUCTION

Mesomorphic mixtures comprised of polymers and liqu
crystal molecules are of interest because of their impor
technological applications in high modulus fibers, nonline
optics, and electro-optical devices. The performances
these systems are closely related to a chain extension
liquid-crystal phase and phase separations@1–3#. Low-
molecular-weight liquid crystals are modeled as rigid rodl
molecules. On the other hand, polymer chains have a va
of stiffnesses and so when the polymer chains are mi
with the liquid-crystal molecules we can expect vario
types of phase separations depending on the stiffness o
polymer chain.

In mixtures of a flexible polymer and a liquid crysta
broad biphasic regions between an isotropic phase an
nematic phase appear below the nematic-isotopic trans
~NIT! temperature of the pure liquid-crystal molecule. T
liquid-crystalline phases are destroyed on increasing
polymer concentration. These nematic-isotropic phase s
rations have been investigated both experimentally@4–8# and
theoretically @9–15#. In contrast, mixtures of a liquid
crystalline polymer and a liquid-crystal have good miscib
ity even in a liquid-crystalline phase@1,16–23#. Flory and his
collaborators have described the various types in the ph
diagrams of liquid-crystalline polymers@24–29#. Recently
the phase behaviors in binary mixtures of liquid-crystal m
ecules have been analyzed by combining the Flory-Hugg
theory for isotropic mixing and the Maier-Saupe theory
anisotropic ordering@30–33#. These theories, however, hav
not considered the induced rigidity, or straightening, of po
mer chains in a nematic phase. In these systems it is im
tant to consider the co-occurrences of orientational orde
of the polymer chains in the liquid-crystal solvents and ph
separations@16–23#. Some years ago, based on an elas
chain model, some authors examined the phase beha
and the orientations of polymer chains in liquid-crystal s
vents@17–19#.

*Author to whom correspondence should be addressed.
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In this paper we present a mean-field theory to desc
phase behaviors in binary mixtures of a liquid-crystal m
ecule and a polymer chain which has various degrees of fl
ibility. To describe the orientational ordering of polyme
chains, we extend the previous model for liquid-crystalli
polymers@34,35# to the mixtures of a liquid crystal and
semiflexible polymer chain. We assume here that two nei
boring bonds on the polymer chain have either bent
straightened conformations and the straightened confor
tion gives rise to a rigid rodlike shape. The liquid crystals
low molecular weight are modeled by rigid rodlike mo
ecules. On the basis of the Onsager model for excluded
ume interactions @36#, the Maier-Saupe model fo
orientational-dependent attractive interactions@37,38# be-
tween rigid rodlike molecules, and the Flory-Huggins theo
for binary mixtures@39#, we derive the free energy of ou
systems. The nematic-isotropic transitions, the order par
eter of polymer chains, and that of liquid crystals are exa
ined as a function of the flexibility of a polymer chain an
the strength of anisotropic interactions and we calculate
phase diagrams including binodal, spinodal, and the N
lines on the temperature-concentration plane. These l
will be important to study not only equilibrium properties b
also phase separation dynamics such as spinodal decom
tions and metastable phase growth@40#. We also derive the
Landau–de Gennes expansion of our free energy. This
pansion facilitates an intuitive understanding of the unde
ing physics.

II. FREE ENERGY FOR MIXTURES OF A POLYMER
AND A LIQUID CRYSTAL

Consider binary mixtures of a semiflexible polymer and
liquid crystal. The polymers and liquid crystals intera
through orientational-dependent van der Waals interacti
and excluded volume interactions. In these systems, it is
portant to consider both orientational ordering, or straight
ing, of polymer chains and nematic ordering of liquid-crys
molecules. In order to take into account the partial orien
tional ordering of the polymer chains in a nematic phase,
assume here that two neighboring bonds on the poly
763 ©1999 The American Physical Society
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764 PRE 59AKIHIKO MATSUYAMA AND TADAYA KATO
chain have either bent or straightened conformations and
conformational energy of the straightened bond isue0u less
than that of the bent bonds@34#. The straightened state of th
bonds on a polymer chain is energetically favored, howe
it is entropically unfavorable. The nematic behaviors of t
straightened bonds as well as liquid crystals can be indu
by the anisotropic interactions. To describe the nema
isotropic phase transition~NIT! and phase separations, w
consider thermodynamics of our systems. Hereafter we r
to the segments in straightened bonds as ‘‘rigid’’ segmen

Let Np and Nl be the number of the semiflexible poly
mers and the liquid crystals, respectively. Letnp be the num-
ber of segments on the polymer andnl be that of the liquid
crystal. The free energy of our systems can be given by

F5Fbent1Fmix1Fnem. ~2.1!

The first term shows the free-energy change needed
straighten bent bonds on the polymers and is given by

bFbent5Np@nr~b f 0!2Scomb/kB2DSconf/kB#, ~2.2!

where b[1/kBT, T is the absolute temperature,kB is the
Boltzmann constant,f 0 is the local free-energy differenc
between the bent and straightened conformations, andnr
shows the number of rigid segments on the polymer ch
We assume here that each chain has the same conforma
The second term in Eq.~2.2! is the combinatorial entropy
related to the number of ways to selectnr rigid segments out
of the np segments on the polymer and is given by

Scomb/kB5 ln
np!

nr ! ~np2nr !!
. ~2.3!

By using Stirling’s approximation, Eq.~2.3! can be rewritten
as

Scomb/kB52np@x ln x1~12x!ln~12x!#, ~2.4!

where

x[nr /np ~2.5!

shows the fraction of rigid~straightened! segments on the
polymer chains. The third term in Eq.~2.2! shows the change
in conformational entropy to bring a chain from a crystalli
~straightened! state to a flexible amorphous state. This e
tropy was omitted in the earlier work@34#. According to
Flory’s lattice theory, the conformational entropySconf(np)
of the polymer chain with thenp flexible segments is given
by @39#

Sconf~np!/kB5 lnFnpz~z21!np22

s exp~np21!
G , ~2.6!

wherez is the lattice coordination number ands is the sym-
metry number of the chain. When thenr segments out of the
np segments on a polymer chain are replaced by rigid s
ments, the conformational entropy changeDSconf is given by
he

r
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DSconf5Sconf~np2nr !2Sconf~np! ~2.7!

52kBlnF np

np2nr
S z21

e D nrG . ~2.8!

From Eqs.~2.4! and ~2.8!, the free energy~2.2! can be ex-
pressed as

bFbent/Nt5fFxb f 01x lnS z21

e D
1x ln x1S 12x2

1

np
D ln~12x!G , ~2.9!

whereNt5nl Nl 1npNp is the total lattice sites of our sys
tems andf5npNp /Nt is the volume fraction of the polyme
chains. The volume fraction of the liquid crystals is given
f l 512f. The volume fractionf r of the rigid ~straight-
ened! segments on a polymer chain is given by

f r5nrNp /Nt5xf. ~2.10!

The second term in Eq.~2.1! is the free energy of the
isotropic mixing for a polymer and a liquid crystal. Accord
ing to the Flory theory, the free energy is given by@39#

bFmix /Nt5
12f

nl

ln~12f!1
f

np

ln f1xf~12f!,

~2.11!

wherex ([U0 /kBT) is the Flory-Huggins interaction pa
rameter related to isotropic interactions between unlike m
lecular species@39#.

The third term in Eq.~2.1! shows the free energy for th
nematic ordering. To describe the nematic behaviors,
take into account both the excluded volume interactions@36#
and the orientational-dependent~Maier-Saupe! interactions
@37,38#. We consider three coupling terms of the anisotro
interactions. Letn l l be the orientational-dependent~Maier-
Saupe! interactions between the liquid crystals,n l r be that
between the liquid crystal and the rigid segment on the po
mer chains, andn rr be that between the rigid segments
the polymer chains.

On the basis of both the Maier-Saupe model
orientational-dependent attractive interactions and the
sager model for excluded volume interactions, the free
ergy of the nematic ordering is given by@15,41,35#

bFnem/Nt5
12f

nl

E f l ~u!ln 4p f l ~u!dV

1
f r

nr
E f r~u!ln 4p f r~u!dV2 1

2 n l l Sl
2 ~12f!2

2n l rSl Sr~12f!f r2
1
2 n rr Sr

2f r
2

1~r l l 21!~12f!212~r l r21!~12f!f r

1~r rr 21!f r
2 , ~2.12!
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PRE 59 765PHASE SEPARATIONS AND ORIENTATIONAL . . .
wheredV[2p sinu du, u is the angle between the rigid se
ments and the director of the orienting field. Equation~2.12!
is the second virial approximation and, strictly speaking, c
be justified in the limit of sufficiently large values ofnl and
nr only. The f l (u) and f r(u) show the orientational distri
bution functions of the liquid crystals and that of the rig
segments on the polymers, respectively. The first two te
represent the decrease of entropy due to the nematic o
ing. The orientational-order parameterSl of the liquid crys-
tals is given by

Sl 5E P2~cosu! f l ~u!dV ~2.13!

and the orientational-order parameterSr of the rigid seg-
ments on the polymers is given by

Sr5E P2~cosu! f r~u!dV, ~2.14!

where P2(cosu)[3(cos2u21/3)/2. The last three terms i
Eq. ~2.12! show the excluded volume interactions betwe
rigid segments and the functionr i j ( i , j 5l ,r ) is given by

r i j 5
4

pE E sing~u,u8! f i~u! f j~u8!dV dV8. ~2.15!

In the isotropic phase, we havef i(u)51/(4p) and r i j 51
@36#.

In the next section, we derive the order paramet
Sl ,Sr , and the fractionx in thermal equilibrium conditions

III. NEMATIC ORDERING OF POLYMERS
AND LIQUID CRYSTALS

The orientational distribution functionf l (u) of the liquid
crystals andf r(u) of the rigid segments on the polymers a
determined by the free energy~2.12! with respect to these
functions:

@]Fnem/] f l ~u!#x, f r
50, ~3.1!

@]Fnem/] f r~u!#x, f l
50, ~3.2!

with the normalization conditions

E f i~u!dV51, ~3.3!

i 5l ,r . Here we expand the kernel sing of Eq. ~2.15! in
Legendre polynomials:

sing5
p

4
2

5p

32
P2~cosu!P2~cosu8!. ~3.4!

Substituting Eq.~3.4! into Eqs.~2.15!, Eqs.~3.1!, ~3.2!, and
~3.3! lead the distribution function:

f l ~u!5
1

Zl

exp@h l P2~cosu!#, ~3.5!

h l [nl @~n l l 1 5
4 !Sl ~12f!1~n l r1

5
4 !Srxf#, ~3.6!
n

s
er-

n

s

for the liquid crystals and

f r~u!5
1

Zr

exp@h r P2~cosu!#, ~3.7!

h r[npx@~n l r1
5
4 !Sl ~12f!1~n rr 1 5

4 !Srxf#, ~3.8!

for the rigid segments on the polymer chains, where the c
stantsZi ( i 5l ,r ) are determined by the normalization co
dition ~3.3!. The termsn i j and 5

4 in Eqs. ~3.6! and ~3.7!
correspond to the attractive and excluded volume inter
tions. From Eqs.~3.3!, ~3.5!, and ~3.7!, the constantZi is
given by

Zl 54pI 0@h l #, ~3.9!

Zr54pI 0@h r #, ~3.10!

where the functionI 0@h i # is defined as

I q@h i #[E
0

1

@P2~cosu!#qexp@h i P2~cosu!#d~cosu!,

~3.11!

q50,1,2, . . . . Substituting Eqs.~3.5! and ~3.7! into Eqs.
~2.13! and ~2.14!, we obtain two self-consistency equation
for the two order parametersSl andSr :

Sl 5I 1@h l #/I 0@h l #, ~3.12!

Sr5I 1@h r #/I 0@h r #, ~3.13!

and the average value of the order parameters is given b

S5Sl ~12f!1Srf r ,
~3.14!

5Sl ~12f!1Srxf.

The order parameterSp of the polymer chain is given by
Sp5xSr . The functions i[* f i(u)ln 4pfi(u)dV and r i j in
Eq. ~2.12! are now given as a function of order paramete
Sl andSr as follows:

s i5h iSi2 ln I 0@h i #, ~3.15!

r i j 512 5
8 SiSj . ~3.16!

Substituting Eqs.~3.15! and ~3.16! into Eqs.~2.12!, the free
energy for the nematic ordering is given by

bFnem/Nt5
1
2 ~n l l 1 5

4 !Sl
2 ~12f!2

1~n l r1
5
4 !Sl Sr~12f!xf

1
1

2
~n rr 1 5

4 !Sr
2x2f2

2
12f

nl

ln I 0@h l #2
f

np

ln I 0@h r #. ~3.17!

The fractionx of the rigid segments on a polymer chain
determined by minimizing the free energy~2.1! with respect
to x: (]F/]x)Sl ,Sr

50. From Eqs.~2.9! and~3.17!, we obtain
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~n rr 1 5
4 !xfSr

21~n l r1
5
4 !~12f!Sl Sr2D~x!50,

~3.18!

with

D~x![
1

fF lnS x

~12x!l D1
1

np~12x!
G>0, ~3.19!

and the solution forSr with fÞ0 is given by

Sr5
1

2~n rr 1 5/4!xf
$2~n l r1

5
4 !~12f!Sl

1A@~n l r1
5
4 !~12f!Sl #214~n rr 1 5

4 !xfD~x!%,

~3.20!

wherel is defined as

l[S e

z21Dexp~2b f 0!. ~3.21!

By solving the coupled equations~3.12!, ~3.13!, and
~3.20!, we can obtain the values of the orientational-ord
parametersSl ,Sr , and the fractionx of the rigid segments
le

s

r

on a polymer chain as a function of temperature and conc
tration. From Eq.~3.20! the order parameterSr is given as a
function ofSl andx and so we only solve the coupled equ
tions ~3.12! and ~3.13! for Sl andx.

We further split the local free-energy differencef 0 in Eq.
~3.21! into two parts:

f 05e02Ts0 , ~3.22!

where s0 (5kBln v0) is the local entropy loss ande0
(,0) the energy change needed to straighten a bent b
The v0 is defined asv0[v1 /v2 , where v1 (v2) is the
number of states of a straightened~bent! bond. If the seg-
ments are placed on a lattice of coordination numberz, we
havev051/(z22) @24#. The stiffness of a polymer chain i
controlled by thee0. The larger values ofe0 correspond to
the stiffer chains. The most flexible polymer chain is realiz
whene050. Substituting Eq.~3.22! into Eq. ~3.21!, we ob-
tain

l5v exp~2be0!, ~3.23!

wherev[e/@(z21)(z22)#.
The chemical potentials are given by
bmp5b~]F/]Np!Nl

5npF2x ln l1x ln x1S 12x2
1

np
D ln~12x!G1 ln f1S 12

np

nl

D ~12f!

1npx~12f!21npS 1
2 ~n l l 1 5

4 !Sl
2 ~12f!21~n l r1

5
4 !Sl Sr~12f!xf1 1

2 ~n rr 1 5
4 !Sr

2x2f22
1

np

ln I 0@h r # D
~3.24!

for the polymer chain and

bm l 5b~]F/]Nl !Np

5 ln~12f!1S 12
nl

np
D f2nl xf2

1nl S 1
2 ~n l l 1 5

4 !Sl
2 ~12f!21~n l r1

5
4 !Sl Sr~12f!xf

1 1
2 ~n rr 1 5

4 !Sr
2x2f22

1

nl

ln I 0@h l # D , ~3.25!
tion
on-
for the liquid crystal. Whenx50, Eqs. ~3.24! and ~3.25!
show the chemical potentials in binary mixtures of a flexib
polymer and a liquid crystal@15# and whenx51, the theory
results in that for binary mixtures of rigid rodlike molecule
@9,30#.

The coexistence curves~binodal! of the phase equilibrium
are derived by the coupled equationsmp(f8)5mp(f9) and
m l (f8)5m l (f9), where the volume fractionf8 and f9
corresponds to that of the lower and higher concentra
phases, respectively. Spinodal lines are derived by the c
dition (]m l /]f)50. The region (]m l /]f).0 corresponds
to the unstable region.

In our numerical calculations, we define here the ratioj
of the anisotropic interaction as
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PRE 59 767PHASE SEPARATIONS AND ORIENTATIONAL . . .
j[n rr /n l l ~3.26!

and assume that the orientational-dependent interactionn l r
is proportional to the square root of the product ofn l l and
n rr @42,31#:

n l r5bAn l l n rr , ~3.27!

whereb is the constant. We then obtain

n rr 5jn l l , ~3.28!

n l r5bAjn l l . ~3.29!

The orientational-dependent interaction parametern l l be-
tween the liquid-crystal molecules is given to be invers
proportional to temperature@38#:

n l l 5Ua /kBT. ~3.30!

We also define the dimensionless nematic interaction par
etera:

a[n l l /x5Ua /U0 . ~3.31!

Whenf50, Eq.~3.17! represents the free energy for th
pure liquid-crystal molecule:

bF5 1
2 ~n l l 1 5

4 !Sl
2 2

1

nl

ln I 0@h l
° #, ~3.32!

h l
° [nl ~n l l 1 5

4 !Sl . ~3.33!

The nematic phase appears atnl (n l l 15/4)54.54 @34,38#
and so the NIT temperatureTNI, l of the pure liquid crystal is
given by

TNI, l 5
nl ~Ua /kB!

4.5421.25nl

. ~3.34!

In our theory, the stiffness of the polymer chain is ch
acterized with a single parametere or e0. The larger values
of e correspond to the stiffer polymers. The most flexib
polymer chain is realized whene50 or x50, in which our
theory describes binary mixtures of a flexible polymer an
liquid crystal @15#. In contrast, whene@0 or x51, the
theory results in that for binary mixtures of rigid rodlik
molecules@9,30#. Our theory connects the two limiting theo
ries.

IV. PHASE SEPARATIONS

In this section, we calculate the equilibrium values of o
der parametersSl ,Sr , and the fractionx of rigid segments
on a polymer chain as a function of temperature and conc
tration and derive the phase diagrams on the tempera
concentration plane. In the numerical calculations of Sec.
we define here the stiffness parametere[ue0u/Ua of a semi-
flexible polymer chain. The values ofe0 and Ua are of the
order of thermal energy. In the following calculations we u
v50.025 (z512), b51, j51, a55, nl 52, andnp520
for example.
y

-

-

a

-

n-
re-
I,

e

Figure 1 shows the orientational-order parameters and
fractionx of the straightened segments on the polymer ch
plotted against the polymer concentrationf with the reduced
temperatureT/TNI, l 50.9, whereTNI, l is the NIT tempera-
ture of the pure liquid-crystal molecule. The value of sti
ness parametere of the polymer chain is changed. The larg
values ofe correspond to the stiffer polymer chains. Th
solid curve refers to the order parameterSl of the liquid
crystal and the dash-dotted line shows the average-orde
rameterSp ([xSr) of the polymer chain. The short-dashe
line shows the average-order parameterS of the system and
the dotted line corresponds to the fractionx of the rigid seg-
ments on the polymer chain. WhenT/TNI, l 50.9, the pure
polymer chains ofe,2.25 are in an isotropic state, and so
there are no correlations between polymers and liquid c
tals, the nematic ordering of the polymer chains cannot t
place. However, we find, for small values ofe, a first-order
NIT at a certain polymer concentration where the nema
ordering of the polymer chains is induced by the liquid cry
tals. The values ofx andSp in the nematic phase are sma
and the polymer chains are slightly ordered. The nem
phase is almost stabilized by the orientational ordering of
liquid-crystal molecule. In the case ofe50, or a sufficiently
flexible polymer, the nematic ordering of the polymer cha
cannot occur and the orientational ordering of the liqu
crystal only takes place atf'0.06 @15#. On increasing the
stiffnesse, the value ofx becomes large and the order p
rameterSp is increased and so the polymer chain and
liquid crystal are highly ordered in the nematic phase.

Figure 2 shows the phase diagrams on the temperat
concentration plane for~a! e52 and ~b! e52.5. The solid
curve refers to the binodal and the dotted line shows
first-order NIT line. The dash-dotted line shows the spinod
In the biphasic regions between the nematic and the isotr
phases, we have two different metastable regions: an iso
pic metastable~IM !; a nematic metastable~NM!, and a nem-
atic unstable region~NU!. When the value ofe is small, the
theory represents the phase diagrams of flexible polym
liquid-crystal mixtures and the broad biphasic region b
tween a nematic and an isotropic phase appears@34#. On
increasing thee, the NIT temperatureTNi,p of the pure poly-

FIG. 1. Orientational-order parameters and the fractionx of the
straightened segments on the polymer chain plotted against
polymer concentrationf for the reduced temperatureT/TNI, l

50.9. The value of stiffness parametere of the polymer chain is
changed.
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768 PRE 59AKIHIKO MATSUYAMA AND TADAYA KATO
mer chain increases and the biphasic region becomes na
The nematic unstable region~NU! disappears in Fig. 2~b!.
The type of the phase diagrams strongly depends on the
ness of the polymer chains. The same results are also de
for the dependence on the molecular weight of the polym
chain. On increasing the lengthnp of the semiflexible poly-
mer chain, theTNI,p is increased and the biphasic regio
becomes narrow. Flexible polymers almost do not dissolv
liquid-crystal solvents at low polymer concentrations and
broad biphasic region between the nematic and isotro
phases appears below the NIT temperature of the pure li
crystal. The free energy is minimized by the phase separa
rather than the straightening of the polymer chains.
stiffer polymer chains, the mixtures have the narro
nematic-isotropic biphasic region and the spinodal reg
disappears. The free energy is minimized by the partial
dering of the polymer chain in liquid-crystal solvents rath
than the phase separation. The former can be classified a
polymer-induced phase separation. The latter, however,
be classified as the polymer-induced stabilization of nem
ordering. The stiffness of the polymer chain strongly affe
the nematic ordering of the polymer chain in the liqui
crystal solvent and plays an important role in characteriz
the unstable regions and the width of the biphasic reg
between a nematic and an isotropic phase.

On decreasing the value of the nematic interaction par
eter a, the unfavorable interaction parameter (x) between
the polymer and the liquid crystal becomes dominant in
free energy. Figure 3 shows the phase diagrams on
temperature-concentration plane for~a! a52.6, ~b! a52.5,

FIG. 2. Phase diagrams on the temperature-concentration p
for ~a! e52 and~b! e52.5.
w.

iff-
ed
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r
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e
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and~c! a52.3 with e52.8 andb50.7. When the value ofb
is small (b,1), the nematic-isotropic liquid coexistence a
pears below the NIT temperature of the individual eleme
In Fig. 3~a!, we find the spinodal line and the two-pha
coexistence between nematic phases with an upper cri
solution temperature~UCST! in the nematic phase@23#. We
also find the azeotrope point at which two equilibrium ne
atic and isotropic phases have the same composition.
decreasing the value ofa, the UCST in the nematic phas
increases and we find the coexistence of two isotropic liq
phases with an UCST as shown in Fig. 3~c!. In Figs. 3~b! and
3~c!, the spinodal lines of the nematic phase intersect at
NIT curve. We also find two triple points. The upper trip
point shows the coexisting of two isotropic liquid phases a
a nematic phase. The lower triple point corresponds to

ne

FIG. 3. Phase diagrams on the temperature-concentration p
for ~a! a52.6, ~b! a52.5, and ~c! a52.3 with e52.8 and b
50.7.
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nematic-isotropic-nematic phase separation. Below the tr
point we have broad biphasic regions between two nem
phases. The two-phase coexistence in a nematic phase is
trolled by the nematic interaction parametera[Ua /x.

V. CONCLUSION

We have presented a mean-field theory to describe
phase separations in binary mixtures of a liquid-crystal m
ecule and a polymer chain which has various degrees of fl
ibility. The theory takes into account both the partial orie
tational ordering of the polymer chain and the nema
ordering of the liquid crystal. The phase diagrams, includ
binodal, spinodal, and the NIT lines, on the temperatu
concentration plane predict the unstable and metastable
gions in the nematic-isotropic, nematic-nematic, and thr
phase coexistence regions. These regions should
important roles not only in the static properties but also
the dynamics of phase separations.

APPENDIX A: LANDAU –de GENNES EXPANSIONS

In this appendix, we focus on the vicinity of the NIT poin
in binary mixtures of polymer and liquid crystals. In order
obtain the approximate formulas of the NIT temperatureTNI
and the order parameterS, we derive the Landau–de Genn
expansion of our free energy~3.17!. This expansion helps a
intuitive understanding of the underlying physics. Here
assumen[n l l 5n l r5n rr and the value ofx is a constant
for simplicity. The larger values ofx correspond to the stiffe
polymers. The characteristic ratiol c[^R2&/Rmax of the poly-
mer chain is given byl c5(11x)/(12x) for large np
@24,34#, where^R2& shows the mean-square end-to-end d
tance of the polymer chain,Rmax5anp is the length of the
chain at full extension, anda is a bond length. Equation
~3.6! and ~3.8! become

h l 5nl ~n1 5
4 !S, ~A1!

h r5npx~n1 5
4 !S, ~A2!

respectively. Equation~3.11! can be expanded in theh i as

ln I 0@h i #5
1

10
h i

21
1

105
h i

32
1

700
h i

4
¯. ~A3!

Substituting Eq.~A3! into Eq. ~3.17!, we obtain the nematic
free energy as an expansion in the order parameterS:

bFnem/Nt5~n1 5
4 !~AS22BS31CS4!, ~A4!

A[ 1
2 ~12 1

5 a1h!, ~A5!

B[ 1
105a2h2, ~A6!

C[ 1
700a3h3, ~A7!

a1[~12f!g1fx2, ~A8!

a2[~12f!g21fx3, ~A9!
le
ic
on-

e
l-
x-
-
c
g
-

re-
-

ay

e

-

a3[~12f!g31fx4, ~A10!

with g5nl /np and

h[~n1 5
4 !np . ~A11!

The h is given as a function of temperature through t
anisotropic interactionn, which is inversely proportional to
temperature. The equilibrium value ofS is given by minimiz-
ing the free energy. The discontinuous phase transition
curs at the NIT pointhNI ,

hNI5
1

2S a1

10
1

a2
2

63a3
D 21

, ~A12!

where the free energies Eq.~A4! of the isotropic and nematic
phases are equal. Forh,hNI , we haveS50. For h.hNI ,
the order parameter is given by

S5
3B

8CF11A12
32AC

9B2 G
5

5a2

2ha3
F11A11

28a1a3

5a2
2 S 12

5

a1h
D . ~A13!

The order parameterSNI at the NIT point is given by

SNI5
B

2C
5

20a2

3a3
S a1

10
1

a2
2

63a3
D . ~A14!

The equilibrium order parameterSstarts atSNI and gradually
approaches 1 with increasingh(,5/a1). From Eqs.~A11!
and ~A13!, the NIT temperature is given by

TNI5
Ua /kB

~hNI /np21.25!
. ~A15!

For T,TNI , the nematic phase becomes stable. Whenx
51, Eq. ~A15! shows the NIT temperature for the bina
mixtures of rigid rodlike molecules.

Here we derive the approximate formulas for the N
temperature and the order parameter at the NIT point for
following three cases. For mixtures of a sufficiently flexib
polymer and a liquid crystal, we can setx50 and so we
obtain hNI5315/@73(12f)g#. From Eq. ~A15!, the NIT
temperature is given by

TNI5
4~Ua /kB!~12f!

5@3.45/nl 2~12f!#
. ~A16!

The NIT temperature is decreased with increasingf at f
.123.45/nl . The order parameterSNI at the NIT point is
decreased with increasingf as

SNI50.772~12f!. ~A17!

For pure liquid crystals without polymer chains, we c
setf50 and obtain
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TNI, l 5
4~Ua /kB!

5~3.45/nl 21!
~A18!

andSNI50.772. TheTNI, l increases with increasingnl and
diverges atnl 53.45. In our mean-field approximation
when the axial rationl of the liquid crystal is larger than
3.45, the nematic phase is stable at all temperature.
larger values ofnl , the repulsive interactions between rig
rods dominate and the attractive interaction plays only
auxiliary role in the NIT and so theTNI diverges@15,27,43#.

Whenf51, we can obtain the formula for pure semifle
ible polymers@34#. The stiffness of the polymer is controlle
by x[nr /np . From Eq.~A15!, we obtain

TNI,p5
4~Ua /kB!np

5~3.45/x22np!
~A19!
.

e

y

s

t.

y

h-

ys
or

n

and SNI50.772x. The temperatureTNI,p is increased with
increasing np when np,3.45/x2. For long-semiflexible
chains (x!1), the order parameter at the NIT point is sm
and the transition becomes almost second order@44#.

From Eqs.~A18! and ~A19!, we obtain

TNI,p5TNI, l ~A20!

at x5x* ([Anl /np). Whenx,x* , the temperatureTNI of
Eq. ~A15! decreases with increasing the polymer concen
tion f and the polymer chains destroy the orientational
dering of the liquid crystals. In contrast, whenx.x* the
temperatureTNI increases with increasing polymer conce
tration f and the polymer chains promote the orientation
ordering of the liquid crystals.
-
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